
Peking University Randomized Algorithm, 2025 Spring

Nice Problems with Randomized Algorithm

Problem 1 (20’) (Heavy-Light Partition)

Background Let G = (V,E) be a directed graph with non-negative edge weights. Given such a
graph, Dijkstra’s algorithm can compute the shortest path from a source vertex to all other vertices in
O((n+m) log n) time, where n = |V | and m = |E|. However, Dijkstra’s algorithm does not generalize
to graphs with negative edge weights. In 2022, Bernstein, Nanongkai, and Wulff-Nilsen proposed
a breakthrough algorithm for computing single-source shortest paths in graphs with arbitrary edge
weights, running in O((n+m) ·polylog(n)) time. Their work received the Best Paper Award at FOCS
2022.

Problem A key step in their algorithm involves the following graph partitioning problem:
Given a directed graph G′ = (V,E′) with non-negative edge weights and a parameter r > 0, define
the ball around a vertex v ∈ V as

B(v, r) = {u ∈ V | distG′(v, u) ≤ r},

where distG′(v, u) denotes the shortest path distance from v to u in G′.
Design an algorithm, running in O((n + m) · polylog(n)) time, that computes the set of all vertices
v ∈ V such that

|B(v, r)| ≤ 7

8
n,

and for all remaining vertices v′ ∈ V , it holds that

|B(v′, r)| ≥ 3

4
n.

You may use randomization in your algorithm. The output should be correct with high probability.
You need to prove the correctness of your algorithm.

Problem 2 (30’) An Undergraduate Broke Yao’s Conjecture

Figure 1: Background of this problem

1

Peking University Randomized Algorithm, 2025 Spring

A hash table is a widely used data structure that stores a collection of key-value pairs and supports
efficient operations such as insertion, lookup, and deletion. The core idea is to store data in an array
of size n, where each position in the array is called a slot.
To insert a key (e.g., a username or student ID), we compute its hash value—an integer between 0
and n− 1—using a hash function. This value determines the slot where the key should be stored.
However, two different keys may hash to the same slot. This situation is called a collision. A common
technique to resolve collisions is called open addressing, where we use multiple independent hash
functions h1, h2, h3, . . . to generate a sequence of candidate slots. We probe these candidate slots one
by one until an empty one is found.
The performance of open addressing depends heavily on the load factor—i.e., how full the table is.
When the table is nearly full, insertions may require many probes.

In 1985, Professor Andrew Yao made the following conjecture:

Conjecture 1 (Yao’s Conjecture, 1985). In any open-addressing hash table, if the table already con-
tains (1− ε)n keys, then any insertion must take at least Ω(1/ε) expected time.

This conjecture suggests that inserting into a nearly full hash table is inherently slow.

However, in 2021, an undergraduate student constructed a new hashing scheme that refuted Yao’s
conjecture. They designed a randomized insertion algorithm in which each insertion takes expected
time

O(log2(1/ε))

This surprising result shows that efficient insertions are possible in dense hash tables under the right
design.

Problem In this problem, you will prove the following result:

Theorem 2. There exists a randomized algorithm such that, given n and ε, we can insert (1 − ε)n
keys into a hash table of size n, where each insertion takes at most O(log2(1/ε)) time in expectation.

The insertion algorithm is described below. You may assume that all hash functions used in the
algorithm generate uniformly random and independent values.

2

Peking University Randomized Algorithm, 2025 Spring

Algorithm 1 Efficient Hash Table Insertion

1: Input: Number of slots n, load parameter ε
2: Partition the n slots into k = O(log 1

ε) disjoint blocks:

• The first block has size n/2, the second n/4, the third n/8, and so on.

• The last two blocks each have size εn
128 .

3: For each insertion of an element x:
4: Let flag ← 0
5: for i = 1 to k do
6: Let t← 100 log 1

ε
7: if i = k then
8: Set t← 100 log n ▷ Use more probes in the last block

9: for j = 1 to t do
10: Compute hi,j(x) ▷ hi,j is a fully random hash function into block i
11: if slot hi,j(x) is empty then
12: Place x in hi,j(x)
13: Set flag ← 1, break

14: if flag = 1 then
15: break
16: if flag = 0 then
17: Enumerate all slots to find the first empty one and insert x

We will prove the following intermediate result:

Lemma 3. The last block is at most half full with high probability. That is, it contains at most 1
2 ·

εn
128

elements.

(1) [5’]Assuming Lemma 3, prove that the expected time of the last insertion is at mostO(log2(1/ε)).

To prove Lemma 3, we will use the following probabilistic tool:

Lemma 4 (Coupon Collector’s Lemma). Suppose there are n distinct types of coupons. If we draw
X = 2n log 1

δ independent coupons uniformly at random (with replacement), then with high probability,
we will have collected at least (1− δ)n distinct types. You can assume δ−1 ≤ n0.1.

Background: The Coupon Collector Problem is a classic result in probability theory. It describes
the number of samples needed to collect a full set of n unique items when each item is sampled
uniformly at random. The lemma above is a strengthened version which ensures that we collect
almost all types with high probability.

(2) [15’] Prove Lemma 4.
Hint: Compute the expectation, then use concentration bound. (Like Chernoff, Azuma, McDiarmid)

(3) [10’] Prove Lemma 3.
Hint: Suppose block i is more than half full. Let its size be Si, so it contains at least Si/2 elements.
These elements must have failed to insert into block i− 1, even after trying t = 100 log 1

ε random slots

in that block. This gives a total of at least Si
2 · t = Si−1

4 · 100 log 1
ε probes into block i − 1. Apply

Lemma 4 to show that block i− 1 must have been almost completely full, and then show i− 2 is also
almost completely full ...

3

Peking University Randomized Algorithm, 2025 Spring

Problem 3 (50’) (Low Diameter Decomposition)

In this problem, you’ll learn Low Diameter Decomposition, and use it to give approximate algorithm
for some fundamental graph problem like Tree Embedding, All Pair Shortest Path (APSP).
In this problem, the graph can be seen as weighted graph with all the weight being positive integer.

Definition 5 (Low Diameter Decomposition (LDD)). Given an undirected graph G = (V,E), a Low
Diameter Decomposition (LDD) scheme with approximation factor β and diameter bound D is a
randomized algorithm that partitions V into disjoint clusters V1, V2, . . . , Vk satisfying:

1. Bounded Diameter: For each Vi, the induced subgraph G[Vi] has diameter ≤ D.

2. Separation Probability: For any x, y ∈ V ,

Pr
[
x and y lie in different clusters

]
≤ β · dG(x, y)

D
,

where dG(x, y) denotes the shortest-path distance between x and y in G.

Remarks:

• The diameter of G[Vi] is maxu,v∈Vi dG(u, v).

• β balances cluster tightness (D) and separation likelihood. Lower β implies better decomposition
quality.

a. (10’) Prove that the following algorithm gives a LDD with approximation factor β = O(log n), with
probability ≥ 1− n−1.

Algorithm 2 Low Diameter Decomposition (LDD)

Require: Undirected graph G = (V,E), target diameter D > 0
Ensure: Vertex partition {V1, . . . , Vk} with diam(G[Vi]) ≤ D
1: Initialize marked [v]← False for all v ∈ V
2: while ∃v ∈ V with ¬marked [v] do
3: Select arbitrary unmarked vertex v0 ∈ V
4: Sample Rv0 ∼ Geometric(p) with p = min

(
1, 4 loge nD

)
.

5: Compute B ← {u ∈ V | ¬marked[u] ∧ dG(v0, u) ≤ Rv0}
6: Create cluster C ← B
7: marked [u]← True for all u ∈ C
8: Add C to output partition

9: return the computed clustering

Remarks: The naive way to run LDD takes time O(n3), since one need to run Dijsktra for n
times. However, there are ways to do LDD in Õ(n2) time. You will get 10 Bonus Point if you
can find out.

We will use this tool to solve approximate APSP problem. First, we will introduce Low Stretch Tree.

Definition 6. A randomized low-stretch tree of stretch α for a graph G = (V,E) is a probability
distribution D over spanning trees of G s.t.

1. dG(x, y) ≤ dT (x, y), for all T in the support D.

2. ET∼D[dT (x, y)] ≤ α · dG(x, y), ∀x, y ∈ V

4

Peking University Randomized Algorithm, 2025 Spring

Theorem 7. For any metric space M = (V, d), there exists an efficiently sampleable αB-stretch
spanning tree distribution DB, where

αB = O (log n log∆M)

∆M is defined as maxx,y d(x, y), we assume ∀x ̸= y, d(x, y) ≥ 1.

We will prove theorem 7 by the following algorithm.

Algorithm 3 Low Stretch Tree Construction, LST(M, δ)

Require: Metric space M = (V, d), target diameter D = 2δ

Ensure: Spanning tree T with low stretch. Invariant: diameter(M) ≤ 2δ

1: if |V | = 1 then
2: return trivial tree containing the single point

3: Partition V into clusters C1, . . . , Ct ← LDD(M,D/2)
4: for j = 1 to t do
5: Let Mj be M restricted to Cj

6: Recursively build Tj ← LST(Mj , δ − 1)

7: Connect roots r2, . . . , rt to r1 with edges of length 2δ

8: return final tree T rooted at r1

Lemma 8. If the random tree T returned by some call LST(M, δ) has root r, then

1. every vertex x in T has distance d(x, r) ≤ 2δ+1

2. the expected distance between any x, y ∈ T has E[dT (x, y)] ≤ 8δβd(x, y). (Recall that β is the
approximate factor in LDD)

If we can prove Lemma 8, then one can see from Problem a that if β = O(log n), then with high
probability, dT (x, y) ≥ d(x, y) for any x, y, thus theorem 7 can be proved.

b. (20’) Prove the Lemma 8.

c. (10’) Prove the following theorem.

Theorem 9. There’s an algorithm that output O(log n log∆) approximation of APSP on an
undirected graph in Õ(n2) time, and success with probability ≥ 1− 1

poly(n) .

(This means, the algorithm output d′(x, y) for any pair x, y, and satisfies d(x, y) ≤ d′(x, y) ≤
log n log∆ · d(x, y), where d(x, y) is the length of shortest path between x, y.)

d. (10’) Prove the following theorem.

Theorem 10. There’s an algorithm that output O(log n) approximation of ASAP on an undi-
rected graph in Õ(n2) time, and success with probability ≥ 1− 1

poly(n) .

Problem 4 (50’) (A Combinatorial Proof of Chernoff Bound)

In the lecture, you learned how to prove Chernoff Bound by Generating Function. In this problem,
you will learn another way to prove Chernoff Bound. Our goal is to prove the following theorem:

Theorem 11. Suppose X1, . . . , Xn are i.i.d random variables from {−1, 1}, each w.p. 1
2 , and k be a

positive integer with k ≤
√
n. Then

Pr

[
n∑

i=1

Xi ≥ k
√
n

]
≤ e−Θ(k2)

5

Peking University Randomized Algorithm, 2025 Spring

You will achieve this goal step by step.

a. (10’) Prove the following lemma:

Lemma 12. (Poor Man Chernoff Bound) Suppose X1, . . . , Xn are i.i.d random variables from
{−1, 1} each w.p. 1

2 , and k be a positive integer. Then

Pr

[
n∑

i=1

Xi ≥ 2k
√
n

]
≤ 2−k

Hint: First, you can use Chebeyshev’s Inequality to prove the following fact:

Fact 13. Suppose X1, . . . , Xn are i.i.d random variables from {−1, 1} each w.p. 1
2 . Then

Pr

[
n∑

i=1

Xi ≥ 2
√
n

]
≤ 1

4

Then, consider Si =
∑i

j=1Xj , let p be the first point where Sp ≥ 2
√
n, then Pr[Sn ≥ 2k

√
n] =

Pr[p exists] · Pr[Sn − Sp ≥ 2(k − 1)
√
n | p exists]. If you can prove Pr[p exists] ≤ 1

2 , you can
prove the lemma by induction.

b. (10’) Prove the following lemma:

Lemma 14. (Chernoff Bound for Geometric Distribution)

Suppose X1, . . . , Xn are i.i.d random variables, that Xi ≥ 0,Pr[Xi ≥ j] ≤ pj ,∀j = 1, 2, . . . for a
p < 1

4 . Then

Pr

[
n∑

i=1

Xi ≥ 2n

]
≤ (4p)n

.

Hint: If we can prove Pr[
∑n

i=1⌊Xi⌋ ≥ n] ≤ (4p)n, then it’s easy to see the lemma will hold.
Suppose

∑n
i=1⌊Xi⌋ ≥ n, then there exist Y1, . . . , Yn, that ∀1 ≤ i ≤ n,Xi ≥ Yi and

∑n
i=1 Yi = n.

Fix the sequence Y1, . . . , Yn, calculate the probability of sequence Xi satisfies ∀i,Xi ≥ Yi. Then
use union bound for all the possible sequence of Y .

c. (10’) Prove the following lemma:

Lemma 15. (Lowerbound for Chernoff Bound)

Suppose X1, . . . , Xn are i.i.d random variables from {−1, 1} each w.p. 1
2 , and k be a positive

integer and k ≤
√
n, Then

Pr

[
n∑

i=1

Xi ≥
k

2

√
n

]
≥ (

1

4
)k

2

.

You can use the fact:

Fact 16. Suppose X1, . . . , Xn are i.i.d random variables from {−1, 1} each w.p. 1
2 . Then

Pr

[
n∑

i=1

Xi ≥
1

2

√
n

]
≥ 1

4

.

Hint: Divide X1, . . . , Xn into m = k2 groups, use the Fact 16 on each group.

d. (20’) Prove Theorem 11.

6

